
SMALL PERTURBATIONS OF A SPHERICAL FLUID LAYER 
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The evolution of small perturbations of an ideal incompressible fluid is investigated in 
the presence of surface tension forces, when the principal motion is unstable motion of a 
spherical layer with free boundaries. 

I. Description of the Basic Motion. At time t = 0 let an ideal incompressible fluid 
occupy a spherlcal layer 0 < r~o~r<~.rao with an assigned velocity field u r = To/r a, u 8 = 
u~ = O. Here rlo, rao, and To are constants, and Ur, ue, u~ are the velocity components in 
spherical coordinate system (r, O, ~). We assume that at t > 0 the motion is also spherically 
symmetric: u r = ur(r, t), u 0 = u = O. Taking into account surface tension forces and the 
pressure drop at the internal and external boundaries, the motion of the layer is then 
described by the equations 

( t d7 r ~) T(') q ( t ) < r < r 2 ( t ) ;  ( 1 . 1 )  p = po ~ (t) + Po r dt 9-ffffr4 , Ur -- r2 , 

2a 1 2a 2 
p (r~ (t), t) - -  p (r 1 (t), t )  = P (t) + rl (t--~ ~ r~ (t); ( 1 . 2 )  

d r 1  T (t) dr 2 T (t). 

T(0) = To, r l (O)= qo, r~(O)= r2o, ( 1 . 4 )  

where r1(t), re(t) are the radii; oi, on, surface tension coefficients of the inner and outer 
layer boundaries, respectively (generally speaking, o, ~ on, since the inner and outer layers 
can consist of different media); P(t), assigned pressure drop; ~o, fluid density; and u(t), 
an arbitrary function. The expression for the radial velocity u r in (I.i) is found from the 
equation of continuity, and the pressure p is found by integrating the equations of mo~ion. 
Relations (1.2), (1.3) are the dynamic and kinematic conditions at the free layer boundaries 
r = r~(t), r = re(t), and with the initial conditions (1.4) they determine the unknown func- 
tions T(t), r1(t), re(t). The quantities r~(t) and re(t) are related by the conservation 
law of the layer volume V 

which follows directly from (1.3), (1.4). 

For P = 0, oi = oa = 0 approximate expressions were obtained [i] for r1(t), re(t), T(t) 
in the cases of thin (h/r~o << i, h = rio --rio) and thick (r~o/h <<l) layers. Thus, for a 
thin compressible layer 

( t / =  .1 - -  - -  6r o _ + 6r o J' ; --r o '~  ' 

[ h A ~] r~o (1.5) 
r, z(t) =r2o ~[--a2t-~ 6r~---- O ( t _ a 2 t ) 2 -  , Ct2------- r20 a l  ~ 

The equations for a thick layer are more cumbersome. 

This problem was considered in [2] as an example of studying the instability of motion 
of a fluid with free boundaries in the case oI = Oa = 0. The motion of a spherical layer 
under the action of capillary forces only (0, = ua # 0, P = 0, To = 0) was considered in [3], 
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where curves were provided of the dimenslonless collapse time of the la>er as a function of 
the ratio rxo/rzo. 

To determine the law of motion, we introduce the new function 7(t) 

(t) = 3 ,!' T (t) d~, 7 (0) = O. (I. 6) 

From (1.3), (1.4), we f i n d  

rx (r81o+?(t)) ''8, r2= ( r ~ ` , + ? ( t ) )  alS. ( 1 . 7 )  

Substituting the expression for the pressure into (1.2) and using (1.6), (1.7), we arrive at 
the Cauchy problem for the function y(t) 

(l.8) 
6~z _~_ ~)-1/8 6crs 3P (t). 

-- (r~~ + ~')-'/~1 (~')~ = ~ (r'~; + ~  (r~`, + "e)-'~ + P---T-' 

?(0 )  = 0, ~'(0) = 3To. ( 1 . 9 )  

We restrict ourselves to the case of a constant pressure drop P(t) = Po = const. Equa- 
tion (1.8) is integrated: 

(d~, '? 6 o - 3,,, (",~o + v) ~/~ - 3,,~ ( 40  + "e) ~ -  ~0o~' 
-dT/ = p-'~" " 3 -1/3 ,.3 -~t/3 ' [(~,o+~) -(~o+~) ] (1.10) 

3 D = - r  por~ (r?: - -  r : : )  + 3 ~ I ` ,  + 3~=~`,. 

It is clear that for ox # 0, u~ ~ 0 the function y(t) increases monotonically for T~ > 0 
until a certain moment of time t = t~, and then decreases and 7(t) § --r~o when t -> t~ < ~. 
In this case the layer initially diverges and reaches a maximum radius r~, = (r~o + Y,(t~)) ~/~, 
at moment t = tx, where y, is defined by the equality 

3~ x (r~`, q- ?,)~/a + 3(r~ (rio + y,) ' /a + Po?, = D, ( i .  i i )  

and then converges to the center under the action of capillary forces after time t = t~ -- t~. 
For To ~ 0 the layer immediately converges to the center after a finite time. 

If u~ = u~ = 0, Pe = 0 (inertial layer motion) and T. > O, 7(t) increases monotonically, 
y § -, t -~ -, the layer diverges to infinity, and its width tends to Zero: r~(t) - r~(t) ~ 
(by-Z/s)/3. For Te < 0 there occurs a collapse at e finite time t~, defined by the equation 

o 

V 6D 
3 

--rlO 

The motion under the action of a constant pressure drop Po only can be considered, when 
the parameter is Plr=ra(t) = Po, and the internal sphere r = r~(t) is free. In this case it 
is sufficient to put T, = 0, a~ = ua = 0 in Eqs. (1.2), (1.10), and (i.ii), 

Knowing the function 7(t), one uniquely finds T(t), r,(t), and re(t) according to (1.6), 
(1.7), and this description of the basic motion is complete, it being a potential motion with 
potential T(t)/r. 

For whet follows it is required to write the basic motion (1.1) in Lagrange coordinates 
Ej ,= (~:, Ej,, ~n) [ 2 ] :  

x = re(p, t) %, u = xt  = mr% (p = I%1); ( 1 . 1 3 )  
?" ( "~ 

v/p,, = o~ (t) + T (P~ + 'e)-'/3 - ~ (p~ + 'e)-"~`,' ( 1 . 1 4 )  

where 

re(p, 0 = p_1 (p3 + ~)I/~, (1.15) 

and 7(t) satisfies Eq, (i.i0). 
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In concluding =his point, we provide the value of =he radius r** for which the pressure 

is maximum: 

r** = [2 (?')~/3~p~. 

It can be shown that r~(t) < r**(t) < ra(t). 

2. Small Perturbation Equations of a Spherical Layer. As shown in [4], the evolution 
problem of small perturbations of an arbitrary potential flow of an ideal incompressible 
fluid with account of capillary forces can be reduced to the following equations: 

poagt = ~ ~ F, t > 0; 

B = ~ F ,  t> /0 ;  

div M-XM*-~Vq) = O, ~ ~ Q, t >/0; (2,  i) 

M*-~V/[IV"[ n.(l \  + oiM-XM~-'v~Pdt)/' (2 .3 )  

O[t= o = (Do, A(D o = 0. (2 .4 )  

In Eqs. (2.1)-(2.4) M is the matrix of the Jacobi mapping ~ + x($, t) of the initial 
region ~ to the flow region ~t for t �9 0 With elements Mik = ~xi/%$ k (i, k = i~ 2, 3); M*~ 
adjoint matrix; F, boundary of ~; f(~) = 0, its equation; ~, normal to F; Ft, boundary of 
~t; R~ and Ra, principal radii of curvature of its normal cross sections; and ~P/~nFt, normal 
derivatives of the pressure p with respect to Fe. Besides, ~F(t) is the Laplace--Beltrami 
opera=or w~th coeff~czents E = IM~ul , G = IM~T ~, F = M~u,M~8, where (u, 8) + ~(u, ~) is 
some regular parametriza~ion of the boundary F, and F(~) (~ F) is the displacement vector 
of boundary points, characterizing the initial perturbation of the flow region. 

Knowing the function ~(~, t), the pressure and velocity perturbations are determined 
in the form 

= --poOr, ~ = M*-~VO. (2 .5 )  

The function R(~, t), ~ ~ Fj is the derivation of the free boundary in the perturbed 
motion from the free boundary [4]. In stability problems one is usually also interested in 
the behavior of R(~, t), t + ". Thereforej the stability of some potential flow is the problem 
of asymptotic behavior of the solution of problems (2.1)-(2.4). 

The solution of problem (2.1)-(2.4) for o > 0 always exists and is unique if the prlnci- 
pal motion and the boundary F are sufficiently smooth [4]. If also o = 0 then, as shown by 
corresponding examples [5], for ~p/~nF t �9 0 the problem is incorrectly stated according to 
Hadamard. The surface tension is a regularizing factor. 

In our case the region ~ is the spherical layer rlo < P < rao with boundaries F~(p = 
r~o) and Fa(p = rao), therefore it is natural to put u = 8, 8 = ~, --~ %~, 0 ~  2~ m 
~(0, ~) = (cos ~ sin e, sin ~ sin 0, cos %). 

We use the following equations for the principal motion (1.13)-(1o15) [2]: 

m 3 -- 1 tO M = M * = m ~  m ~--'l ___1 ~ + ~ , ~ ,  m ~ Q' M - I =  m 

where ~ is the unit matrix, and Q is the matrix with components Qik = ~iEk/~ a (i, k = i, 2, 
3), with Qa = Q, Q~ = ~, QVO = cp~/p. By means of these equa=ions, Eq. (2.1) transforms to 
the form 

[ 1 rrt4 ~0o-t- 2 p3_?q)o_{_ : 0 ,  p 03+.  ~ @ +.~y AsO (2 .6)  

where A s is t h e  surface part of the Laplace opera=or 

Asq~ = sin - V v6 

We perform a transformation of the boundary condition (2.2), where onemust put o = o~ 
for P = r~o, and c = o2 for p = r2o. Denoting mj(t) = m(rjo , at) (j = i, 2),we find 
E = (rjomj) ~ = AsR/m j. , G = (rjomj sin 8) 8 , F = 0. Therefore, ~F(~)R Since the equation 
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a a a a M*-tx f o r  the  f r e e  boundary Pj i s  f = p - - r j ,  = 0 (J = 1, 2 ) ,  l / R ,  + 1 /R,  = 2/r~am~, I v f l / l  - 
Vf] = i/m~,n,=--~/rt,, na ffi ~/ra,, we obtain from (i.i), (1.14), (2 .3)  - " 

Op 
0~Pl Ir=rl(, ) = P0~10tt, ltt, ~--~lr=r2(t ) = --por2ot'R,,;,t,; 

I = R ~=~(t)= a ,m~q)odt , R ~=%(t) ~ b +  m ~ o d t  , 
0 / 0 / 

a = nt.1 Irl, b = n~. l l r  ~. 

The boundary condition (2.2) gives now two relations 

~- ~ ' ,n~ poqo.~,. + rlom U qom~ ) 
10 . 0 ' 

(2 .7)  

(2.8) 

a, P = qo; (2 .9)  

t t 

P~ m~ m'-~2~ kqom----~ -- P~176 m~Oodt = m--~2 Asb + -Z~ ~ por~om.,tt b, p = 

Thus, to analyze the behavior of small perturbations of the spherical layer, it is re- 
quired to find the function ~(p, 0, ~, t) as the solution of the Initial-boundary-value 
problem ( 2 . 6 ) ,  ( 2 . 9 ) ,  ( 2 . 1 0 ) ,  ( 2 . 4 ) .  

3. Inertlal Motion of the Layer. In this case at = oa = 0, and the layer either diverges 
to infinity, or converges to the center after a time ts, determined by Eq. (1.12). 

It must be noted that in this case, problem (2.6), (2.9), (2.10), (2.4) is correctly 
stated, since by (1.3), (i.13), (2.7) 

Onrt |r=rt(t ) 2r~ (r 1 -- r~) r~ ' 

Po T2 (s __ 1)2 (3~ ~ @ 2~ _[_ 1).< 0 Op ] 

for the accurate solution. It can be shown, however, that for approximation (1.5) ~p/~nFt = 
porlo~h(l -- ~it) -4 > 0, r ffi r1(t), and the linearized problem is incorrectly stated accord- 
ing to Hadamard at this approximation. 

We proceed now to analyzing the small perturbation equations. Since in Eqs. (2.6), 
(2.9), (2.10) the variables (p, t), 8, ~ can be separated, we put 

(l)(p, 0, q),t) = ~ ~ A,,h(p,t) P.k(cosO)e'h% ,i = V- - ' q ,  (3 .1)  
n = l  k=0  

where Pnk(COS 0) are the associated Legendre functions. 

Restricting ourselves to a single harmonic and denoting for brevity A(p, t) = Ank(P, t), 
we obtain from (2.6) 

Aoo~ 2 p3--7  A P ~ n ( n + t ) A =  0 (3 .2)  
-V o~ +,e  o (p3 +.~)~ 

~). The general solution of this equation is represented in which is an equation for A(p, 
the form 

~+/1 

A = Cl (t) (p3 + ,~)-./3 + Co (t) (p~ + ?) ~ ( 3 . 3 )  

with arbitrary functions C~(t), Ca(t). The boundary conditions generate the following rela- 

=ions : 

.7 A +mjrjoA 0 = 0 ,  p = r j o  ( ] = t ,  2). (3 4) 

We transform to the independent variable T(t) = r~o + 7(t) instead of t. Due to (i.i0), where 
one must put o~ = oa = 0, Po = O, the relation between r and t is one-to-one for t ~ O. We 
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denote A~ = A(r~a, ~), Aa = A(rao, w) and express functions Ci(t), Ca(t) by means of equality 
(3.3) in terms of A:(T), A~(r). Besides, we find ~ from (3.3) for O = rio, rio. As a result 
of these transformations, one finally obtains a system of second-order equations in the func- 
tions Ai(T), Ai(~) 

rr 
\m: t  t ,.~7.,: g + ~ { [ (2n ,-I- l )  : 3 (h + -~)',~/3 A2 __ (n -}- t) : : -~- nT --1 (h -:- "it) "F j A: )  = 0; ( 3 . 5 )  

{ i ' mlr2o - -  (3.6) 

\ m i l l  "~ 

where we put 

g('~)-~ [T-~13--(h-~T)-l131-l12; A ( ~ ) = ( h + ' 0  3 " _ _ ~ T ' -  ( 3 . 7 )  
I/ {)o 

To construct the perturbed motion, we supplement the system by the initial conditions 

# A 1 = AlO , A, = A,9, AI~ = rloml~ t (0) r~orn~t t (0) 
g(t%)  ( 3 . 8 )  

for ~ : rio. Here the function g(m) is given by Eq. (3.7), and the constants ank, bnk are 
the Fourier series corfficients in spherical harmonics of the initial deviations of the layer 
surface a(0, ~), b(@, q,). Restricting ourselves primarily to a single harmonic, we find 
from (2.8)-(2.10) (we recall that ~i = ~i = 0) 

Rnk--  r m g(m)AJ~P"~'(c~ (] = 1,2). ( 3 . 9 )  
.~0 jn 

Using the explicit expressions for mj (m), g(T), it can be shown that the coefficients 
of system (3.5), (3.6) have power singularities for T -> - (diverging layer), and T § 0 (con- 
verging layer). For example, for m -> - the asymptotic behavior of Ai(v), Aa(r) is the same 
as that of the functions Ai, Ai, satisfying the system 

' - '  ' + T 
The latter system is easily solved, and for the deviation of the free boundary from (3.9) 

we findou s• I01 I --01 0isflxed) 

R~lr=U(oNdn~T~l~Pn~(cosO) e i~  ( ] = ~ , 2 ) ,  d ~  = const, ( 3 .10 )  

i.e. ~ both surfaces are ~nstable under expansion. 

Under compression m § 0, and it can be shown that Ai ~ dl + da~ ~/a for n = l, Aa ~ dl + 
dim ~/' for n~2 (d~ and dl are constants), and Ai ~ r-(n+i)/s for n~l. Using (3.9)i (3.7), 
we find outside the bands 10I < ~, I~- 0 I < 

Rn~ Ir=r,(t) N dn~,l"C-(~n+l)l~pn~ (cos 8) ei~,  dn~,~ ---- const; (3 .11 )  

R ~  [~=~2(~) N d ~ , ~ l ~ p ~  (cos 0) e ~ ,  d.~,2 ---- const, (3 .12 )  

i.e., for layer compression the external surface is stable, and the internal is not. 

Consider the behavior of ~k for �9 § ,~ (~ + 0), 8 -> 0 (the analysis of 0 § ~ is similarly 
performed). If k ~i and l@Ik~ /~-~ = const, 1/3>/ ~ i>0, we have from (3.11) Rnk ~ m-~, 

+ 0. We conclude from this analysis that there exist sharp stability bands of the layer 
boundaries near the poles @ = O, @ = ~. Similar stability bands also exist near the node lines 
of the associated Legendre functions. 

Similarly restricting ourselves to a single harmonic in (2.5), we derive for the pres- ~ 
sure perturbation: Pnk ~ r- , T -~ -, Pnk ~ m-~In+,)/~ ~ -~ 0. According to (2.5), for the 
velocity field generated by the perturbed flow (i.i), we obtain 

(~,., ~ ~) = (,,,.'-.-%, (~p)-~,:i:>o, (rap ~i.o)-~,:I:>,~), 

whence we have for a single harmonic 

(~,., %o, u,~),.,~< .-., (~,.(",:), ~-4i~ ~ (~) ,  ,.,:-~i~ ~3(~))~ �9 ->  ~ 
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where ~j(~) (j = i, 2, 3) are bounded functions. For compression 

(u,, uo, "+)~k '-" T-~,+i~ @~(~), ~-~i+ ~(+) ,  ~-~i~ ~(~)), 

where ~j (T) are bounded functions for T + 0. 

These concluslons differ from the results of [i]. The point is that near the critical 
point T = 0 (or T = ~) the ratio h/r (or z/h) is not small for a thin (or thick) layer, and 
the expansion in the small parameter h/rlo (or r~o/h) in the perturbed motion, used for simpli- 
fying the problem analysis in [I], is incorrect. The expressions obtained in [i] for Rno are 
correct only at the initial stage of evolution of boundary perturbations of a thin (thick) 
layer moving inartially. 

Let ie~W~(fl), ~+'n~ W~/a(P); from the "energy integral" [6] one can then evaluate 
estimates without solving problem (2.6), (2.9), (2.10), (2.4): 

We r e c a l l  t h a t  T = r i o  + 7 ,  and  7 ( t )  i s  d e t e r m i n e d  by  ( 1 . 1 0 ) ,  w h e r e  one  m u s t  pUt ~x = ~a = O. 
Thus, if the integral quantities (3.13) are chosen as a measure of stability, the layer motion 
during expansion must be considered stable. 

4. Collapse under the Action of Capillary Forces. Inside the layer the function $(p, 0, ~, 
t) is represented in t h e  form of a series (3.1), where Ank(~ , t) = A(p, t) are given by equal- 
ity (3.3). The difference consists of the boundary conditions (2.9), (2.10). Putting A(rlo, 
T) = AI(T), A(rao, T) = As(T), we obtain a system of form (3.5), (3.6), where one must re- 
place the expressions 

and {mT~m~tt + rT~m74p71a~ In (n 4- 1) - -  2]}--1 

r e s p e c t i v e l y .  B e s i d e s ,  f u n c t i o n  g ( ~ )  i s  h e r e  

6 D -- 3olx~/3 --  3o 2 (h ~ x)~/~ 
g2 (T) = ~ -  T -1/3 --(k + T)--1'13 

3 
A study of the system obtained reveals that for z + 0 (7 § the principal terms of 

the asymptotic functions A~, Aa coincide for any fixed n with the principal terms of asymp- 
totic system (3.5), (316). While the internal surface is unstable, for sufficiently high 
harmonics with n >> T- /a the capillary forces restrict the growth of perturbations: 

IRnkl < " 

Thus, surface tension lowers the instability somewhat, without removing it completely. 
A similar effect occurs in the case of collapse of a spherical cavity [7] and a rotating ring 
[8]. In these examples, obviously, the instability is related, according to the terminology 
of [9], to a global singularity formed during the process of collapse motion, when the 
topology of the flow region fit is destroyed after a finite time. 
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DEVELOPMENT OF THREE-DIMENSIONAL PERTURBATIONS IN RAYLEIGH-- 

TAYLOR INSTABILITIES 

Yu. M. Davydov and M. S. Pantaleev UDC 532.517.4 

The study of the Rayleigh--Taylor instability (RTI) is a quite relevant problem. Besides 
the theoretical interest, it is valuable for a number of important practical problems, such 
as stability studies of shell compression in problems of laser thermonuclear synthesis, ob- 
taining superstrong magnetic fields, etc. 

The following clearly expressed stages can be traced in the evolution of RTI: linear, 
intermediate, regular asymptotic, and turbulent [i, 2]. The linear stage is characterized 
by a small amplitude a in comparison with the perturbation wavelength L and an exponential 
velocity growth. When the perturbation amplitude a reaches 0.4L, the process evolves to a 
stage intermediate between the linear and the regular asymptotic one. At the regular asymp- 
totic stage, starting at a = 0.75L, heavy fluid "pea'ks" are definitely formed, breaking down 
with constant acceleration, as well as light fluid "bubbles," floating with constant velocity. 
This RTI is unstable [1, 2] and changes into the turbulent stage, during which there is in- 
tense interaction of various wavelength perturbations and fluid mixing. 

The RTI was investigated in most detail for a planar surface section and a ratio of 
heavy to light fluid densities tending to infinity. The linear stage was studied in clas- 
sical papers [3-5], the regular asymptotic stage in [6-8], a phenomenological theory of the 
turbulent stage was developed in [9], and a discussion of the mechanism of its formation was 
given in [2]. 

An analytical mathematical apparatus for analysis is hardly available, however, since 
experimental studies of RTI are quite difficult. The most complete information can be ob- 
tained from numerical calculations; thus, the case of a free surface was investigated in [i0], 
that of two incompressible fluids in [ll], and that of two compressible media in [12]. We 
also point out [13], where numerical calculations of RTI of a compressible shell were per- 
formed. 

So far only the two-dimensional case was considered both analytically and computationally. 
The two-dimenslonal model is, however, physically inadequate: in a physical experiment the t-~o- 
dimensional structures are destroyed by the transverse shortwave instability, transforming 
into three-dimenslonal ones. 

The numerical methods used in [i0, Ii] can be extended, in principle, to the three-dlmen- 
slonal case. This leads, however, to a quite significant increase in the computing time and 
an increase in the required computer memory, so that detailed calculations cannot be realized 
on contemporary computers. 

In the present paper we perform a numerical experiment on three-dimensional RTI by means 
of the coarse particle method (see, e.g., [14]), widely recommended in solving a wide class 
of complex problems of gas hydrodynamics (sac, e.g., [14, 15]). The development of two- 
dimensional RTI up to large amplitudes, when the process becomes substantially nonlinear, was 
first investigated by the given method in [12]. 

The full spatial three-dimensional nonstationary system of vortex Ruler equations with 
account of a gravitational field is solved by the coarse particle method 
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